EVG: YMAT

RAPIDNCA

CHARER
A 15 MII NMER SHON-Genth tedn. consunics The latices remen fox

plus. interrace:

VOL. 22 NO. 9 SEPTEMBER 1993

EVERYDAY
 WITH PRACTICAL
 ELEGTRONIBS
 INCORPORATING ELECTRONICS MONTHLY

(C) Wimborne Publishing Lid 1993. Copyright In all drawings, photographs and articles pubilshed in EVERYDAY with PRACTICAL ELECTRONICS is fully protected, and reproduction or Imitations in whole or in part are expressly forbidden.

Our October '9s lssue will be publishod on Friday,
3 Sepiomber 1993. See page 635 for details.

Projects

SOUND ACTIVATED CAMERA TRIGGER by Robert Penfold 646
Talk to it nicely and it will show your best side
LIGHTWORK by T. R. de Vaux-Balbirnie 658
Check your trailer or caravan lights are operating from the comfort of thedriver's seat
CHARGE-15 by Ivan Patrick Grove 670
Re-charge your NiCads in fifteen minutes
AMSTRAD PCW 8-CHANNEL ADC - 2 by Jason Sharpe 692
Use your computer to monitor events in the real world
Series
657
DOWN TO EARTH by George Hylton
Investigating Impedance
CIRCUIT SURGERY by Mike Tooley 662
Mike solves your problems and provides circuit ideas
AUDIO AMPLIFIER DESIGN - ENGINEERING OR
ALCHEMY by John Linsley Hood666
Part Two: The influence of components
TEACH-IN '93-11 677
by Alan Winstanley, Keith Dye and Geoff MacDonald
How microprocessors can interface with external circuits and sensors
AMATEUR RADIO by Tony Smith G4FAI 698
Rallies For All; MW DXing; ATV-CB Broadcast; Key Collecting 700
The page for computer enthusiasts
Features
EDITORIAL 645
INNOVATIONS 650
Everyday news from the world of electronics 652
Single electron memories and new transistors for power i.c.s
CHICAGO CONSUMER SHOW by Barry Fox 654
Highlighting the behind the scenes "rumblings" at America's foremoselectronics consumer show
SPECIAL REVIEW by T. R. de Vaux-Balbirnie 664
Tracktronic "stick-down" p.c.b. track 665
BT-No More; Mailbox; Clumsy; Out of Depth
WORKING IT OUT by Robert Hollings 688
Some simple guidelines on making approximate calculations
SHOPTALK with David Barrington 689
Component buying for EPE projects
HOME BASE by Terry Pinnell 690
Jottings of an electronics hobbyist
DIRECT BOOK SERVICE 703
A wide range of technical books available by mail order 706
PCBs for EPE projects - some at sale prices
ELECTRONICS VIDEOS708Our range of educational videos to compliment your studiesADVERTISER'S INDEX712
Readers Services • Editorial and Advertisement Departments 645

AMSTRADPCW 8.CHANNEL ADCONVERTER

 JASON SHARPE

 JASON SHARPE
 PART TWO

Using the ADC for monitoring/data logging and signal sampling. Plus construction of buffer/filter and pre-amplifier boards.

Following on from last month's constructional project, this month we set out some further programming information and outline some possible applications for the Amstrad PCW 8-Channel A/D Converter. Included are a simple add-on Buffer Board, an Active Filter Board and a Pre-amplifier Board.
There are many uses for this analogue to digital converter unit. The first part of this article describes how to use the ADC for moniforing/data logging with simple "sensors". The second half describes its use for sampling signals at higher sampling rates and some elementary signal processing.

SENSORS

Some very simple sensors which can be connected to the 8-Channel ADC are shown in Fig. 1. Potentiometers can easily be connected to the ADC inputs and these can be used as input devices i.e. hand
controls. For instance, analogue joysticks, which consist of two potentiometers (X and Y), can be connected to two channels and could for example be used to control a cursor. Or the potentiometer maybe connected to a stepper motor shaft or other device, to provide position information.
The light sensor, Fig. 1b, could be used to monitor light levels during the day. If a temperature sensor was connected the temperatures during the day could be logged.
Alternatively, the ADC could be used to replace a voltmeter on an existing project, as long as the voltage range is between 0 V and 5 V .

SIMPLE DATA LOGGER PROGRAM

A data logger program which reads all Eight channels at set intervals (set by the user) is set out in Listing. 1. The period

Listing 1. ADC Data Lơgger.

Fig. 1a. Connecting a potentiometer to the ADC. Analogue joysticks can be fitted, they consist of two 'pots' (for X and Y movement), and thus require two channels. (b) Light-level sensor. With a 20 k resistor and an ORP12, the output voltage is nearly full rangefrom OV to 5 V

Fig. 2. The building of a square wave: Peaks at the edge are called "Gibbs" effect".
between readings is timed by using the internal clock. At present the data is simply displayed on the screen, but this could be changed so that the data can be stored in an array, or maybe dumped to the printer or a file, depending on the amount of information you wish to store.
The value read from the ADC will be between 0 and 255, this can be converted into the value of the input voltage by multiplying the value by $(5 \div 255)$.

SAMPLING HIGHER FRECUENCY SIGNALS

To sample continuously changing signals (such as audio signals) ADCs are often used. This may be done for storage (e.g. converting sound to digital data for storage on CD or DAT), signal processing or signal analysis.
This all seems very straight forward, just keep reading in samples and store them in

Fig. 3. Showing the effect of under sampling - "aliasing"

All frequency components of the signal which are greater than twice the sampling frequency are "aliased" to lower frequencies, which causes the sampled signal to be distorted (once this has happened there is no way of getting back the original signal). To prevent aliasing the sampling frequency should be more than twice that

BUFFER/FILTER

The circuit diagram of a buffer and 4th order low-pass filter is shown in Fig. 4. The buffer is there to provide a high input impedance, and also to shift the "bias" on the input signal if required. The filter cutoff frequency is about 16 kHz .

Fig. 4. Combined circuit diagrams for the ADC Buffer and Filter (4th order, cutoff frequency 16 kHz).
memory and process them as required. Unfortunately it is not quite this simple!
This is a very large and complicated subject, what follows is just a brief introduction. In 1807 Fourier presented his theory to the French Academy in Paris. Basically Fouriers" theory stated that an "arbitrary" single-valued real function (or signal) can be represented by an infinite series of pure sine and cosine functions (subject to certain conditions)
An example of this is shown in Fig. 2, a square wave can be built up of odd harmonics of sine waves, as the number of sine terms used increases the more the signal looks like a square wave. Large "peaks" start to build up at the edge of the square wave, this is called "Gibbs effect", but we shall not worry about this.

You can examine the "frequency components" (the frequencies of the sinusoidal components which make up the signal) of signals using a Spectrum Analyser - if you are lucky enough to have access to one of these, as they are rather expensive.
So what has this got to do with ADC's? Well they take samples of signals at discrete moments in time. Fig. 3 shows what happens to a signal which is sampled too slowly, the signal reconstructed from the sampled data is a lower frequency than the original signal. This is called "aliasing".
of the highest frequency component of the signal being sampled (this is called Ny quists' Theorem).
A low-pass filter is normally used to remove the high frequency components of the input signal. Sampling at half the highest frequency requires a perfect low-pass filter (which do not exist!), so in practice higher sampling rates are normally used.

Buffer

The gain of the Buffer is one, i.e. the output signal is of the same amplitude as the input signal. Preset potentiometer VR1 can be used to attenuate the input signal if it is larger than required. The filter unit has a gain of $2.6(8.3 \mathrm{~dB})$, so if using the buffer with the filter VR1 should be adjusted so

Completed ADC, Linear Power Supply, Buffer/Filter board and Pre-amplifier board (foreground).

the combined filter and buffer has a gain of one.
Capacitor Cl removes any d.c. bias from the signal. The voltage from the slider of preset VR2 is added onto the signal. This is useful if, for example; the input signal is a sinewave which is oscillating between $\pm 2.5 \mathrm{~V}$. If the buffer output is set to 2.5 V (with no input signal), then when the input signal is applied, the output would be a sine wave oscillating between 0 V and 5 V (which can be inputted into the ADC).
Capacitor C12 filters off high frequencies. The diodes D1 and D2 are to protect the input from voltages outside the supply rails ($\pm 12 \mathrm{~V}$). Note that because of Cl this buffer will start to attenuate signals below $\simeq 10 \mathrm{~Hz}$.

Filter

The Filter is an active 4th order low-pass Butterworth filter made of two cascaded 2nd order low-pass filters. The cutoff frequency of the amplifier (when the gain has fallen to 0.707 of the original value) is around 16 kHz . The exact cutoff frequency will depend on the tolerance of the components used.

The actual cutoff frequency of the prototype was 15.3 kHz which is within 5 per cent of the expected value. The frequency response of the prototype buffer, filter and their combined response is shown in Fig. 5.

With a fourth order filter the gain starts to fall at 24 dB /octave (i.e. the gain is reduced to 0.0631 of its last value every time the frequency doubles) after the cutoff frequency.
One "unit" of voltage to the ADC is (5 volts $/ 255$) $\simeq 20 \mathrm{mV}$, so an input voltage of 1 mV or 10 mV would still give the value of 0 . The highest sampling rate possible on the PCW is 200 kHz , this means that all frequencies above 100 kHz (Nyquist) should be reduced to a negligible value, i.e. below 20 mV .
If a 100 kHz sine wave with an amplitude of five volts is introduced to the input, it would have to be reduced to 0.004 of its original value to be negligible. A fourth order filter with a cutoff frequency of 16 kHz achieves this as its gain has fallen to less than 0.001 by 100 kHz .

CONSTRUCTION

The Buffer and Filter circuits can be easily constructed on stripboard. The Buffer component layout and breaks required in the underside copper tracks is shown in Fig. 6 and board details for the Filter in Fig. 7.
The component leads, jumpers etc. should be kept as short as possible to help prevent "stray" pickup. Some of the

Fig. 6. Stripboard component layout and details of breaks required in the underside copper tracks of the Buffer board.

Fig. 7. Filter board component layout and details of underside breaks in the copper strips. In the prototype the Buffer and Filter circuits were combined on a single board - see photograph.

The Buffer and Filter circuits built on a single piece of stripboard.

resistor values required for the filter are non standard and so are made of series/parallel combinations, Fig. 8 shows how these can be made up to fit the layout.

SETTING UP

To set the gain of the whole system to "one", attach a 1 kHz sinewave generator to the input of the buffer (connect the buffer output to the filter input if you have not already done so) and the filter output to an oscilloscope. Adjust VRI until the input and output signals are the same size.
If you do not have access to an oscilloscope, set the d.c. output voltage to 0 V by adjusting VR2, and use a 100 Hz signal and an a.c. voltmeter. Adjust VRI until the input and output voltages are equal.
The most useful value to set the bias to is probably 2.5 V . To do this adjust preset VR2 until the (d.c.) output voltage of the unit is 2.5 V , with the input unconnected

INUSE

The Filter and Buffer Unit was designed for sampling audio signals, although it can be used for other purposes. The buffer input can be connected directly to the "Ear" or "Ext.Spk." output of most cassette players.
Set the bias to 2.5 V as described above, if you have a scope connect it to the filter output and adjust the volume on the cassette player so that the output always remains within 0 V to 5 V . When this is done connect the output to the ADC. Otherwise start with the volume at minimum, and use the program described later, increasing the volume until it is at a reasonable level.

PRE-AMPLIFIER

If you wish to digitise smaller signals Fig. 9 shows a circuit diagram for a Single I.C. Pre-amplifier. The purpose of potentiometers VRI and VR2 are the same as in

COMPONEVIS
PRE-AMPLIFIER

Resistors

R1	1 k
R2, R3	1 M (2 off)
R4	10 k
R5	47 k
All	0.25 W

Potentiometer

VR1, VR2 470 k enclosed carbon preset, lin. (2 off)

Capacitors

C1	1μ polyester layer
C2, C3	$0 \mu 1$ ceramic (2 off)
C4	22 p polystyrene

Semiconductors

D1, D2	BAT85 Schottky diode (2 off) IC1 LF356N f.et.-input wideband op.amp

Miscellaneous

Stripboard 0.1 in. matrix, size 10 strips $\times 30$ holes; case to choice (optional); 8 -pin di.i. socket; conectors; multistrand connecting wire; solder pins; solder, etc.

COMPONEVTS

BUFFER/FILTER

Resistors

R1	1k	See
R2, R3	1 M (2 off)	Se
R4 to R8	10 k (5 off)	SHO
R9, R13	39 k (2 off)	TALK
R10, R14	220 (2 off)	Page
R11	$1 \mathrm{k2}$	
R12	4 k 7	
R15	82 k	
R16	120 k	
All $0.6 \mathrm{~W} 1 \%$ metal film		

Potentiometer

VR1 470 k min. enclosed carbon preset lin
VR2 1 M min enclosed carbon preset, lin.

Capacitors

C
1μ polyester layer
2 to C5 1 n polystyrene ($\pm 5 \%$ or better-4 off)
C 6 to $\mathrm{C} 11 \quad 0 \mu 1$ ceramic (6 off)
C12 15p polystyrene

Semiconductors

D1, D2 BAT85 Schottky diode (2 off)
IC1, IC2,
IC3 LF356N f.e.t-input wideband op.amp (3 off)

Miscellaneous

Stripboard 0.1 in . matrix, size 11 strips $\times 27$ holes, and 11 strips $\times 31$ holes; case to choice (optional); conectors; multistrand connecting wire; 8 -pin d.i.l. socket (3 off); solder pins; solder, etc

Approx cost

 guidance only

Circuit diagram for a simple Single I.C. Pre-amplifier (non-inverting).

Fig. 10. Pre-Amplifier stripboard component layout and details of breaks required in the underside copper tracks.
the buffer circuit. The amplifier has a maximum gain of six. This circuit cannot be used to amplify d.c. signals due to capacitor Cl .
The stripboard component layout is shown in Fig. 10. The construction details are the same as for the buffer.

DIGITAL SIGNAL PROCESSING

Volumes can be (and have been) written on the subject of digital signal processing so this is a very brief introduction.

Signals are digitised by taking discrete samples of a continous signal. Let the value of the first sample be (taken at time 0) $x[0]$, the second taken at time T (the sampling period) be, $\mathrm{x}[1], \ldots$ at time $n T$ be, $x[n]$.

You now have an "array" of sampled values. These values can be processed in various ways. These digitised signals can be low, high, band pass (etc) filtered by using software routines. These processed signals can then be outputted to a DAC.

Software filters are often used as they are far more versatile than analogue filters. There are three basic building blocks that are used to make up software filters, these are shown in Fig. 11.

The time delay block delays a sìgnal by 1 unit of time, if $x[n]$ is input at time 1 then at time 2 the output will be $\mathrm{x}[\mathrm{n}]$. When inputting the array of sampled values the output is $x[n-1]$ when the input is $\mathrm{x}[\mathrm{n}]$. The multplier and summa-

tion blocks multiply or sum the inputs and output the result.
The PCW is not really fast enough for signal processing, as this is normally required to be done in "real time". But we have included a simple low-pass filter routine in the scope program described below.

The basic principle is shown in Fig. 12a. A sample, $x[n]$, is feed into the filter, this is then added to the last value input into the filter, $x[n-1]$. The result is then multiplied by 0.5 (output $=0.5 \times(x[n]+x[n-1])$).

The output is the average value of the current sample and the last sample. This is called a two term moving averager and has a low-pass filter effect. Fig. 12b shows the effect it has on a signal, note that the amplitued of the "spike" is reduced more than the rest of the low frequency signal.
The filter implimented in the 'scope program uses four terms instead of two, as this has a more noticable effect. Fig. 13 shows a setup you can use to test the effect of the filter on sinewaves of different frequencies.

SCOPE PROGRAM

A simple Storage 'Scope program is shown in Listing. 2 and Fig. 14 shows some screen dumps from the program. The grid drawn on the screen is $500 \pm 4 \mu \mathrm{~S}$ per division horizontally and IV per division vertically. Most of the program is written in machine code for speed. Some of these machine code routines can be called from basic.
Init: Sets up the screen. Must be called before other routines are used.
Scope: This is the main routine. When invoked a grid is drawn on the screen, it then takes 720 samples (one

Fig. 13 (above right). Testing the effect of the software low bass filter.

Fig. 11 (left). The three basic building blocks that are used to make up software filters.

Fig. 12a (left). Simple low pass filter (two term moving averager).

Fig. $12 b$ (below). Graph showing effect of two term moving of two term moving
averager

(a)

(b)

Fig. 14. Sample screen displays using the 'Scope program (0.5 mS division "horizontal" and 1.0 V division "vertical").
(a) screen dump from some sampled music.
(b) screen dump of sampled 2 kHz sinewave.

Listing 2: Storage 'Scope Program

References to assembly language commands below assume you are using an assembler which uses Zilog Z80 mnemonics. Assemblers of this type are widely available in the Public Domain, and from other suppliers. MAC supplied with the PCW uses 8080 mnemonics. The hex values for the commands are given in most Z 80 books, which can be directly entered into SID.

TIMINGS

The main reason for using machine code is speed. The amount of time instructions take to execute are listed in most Z80 books. The PCW inserts a "wait state", a delay of one clock cycle $(0.25 \mu \mathrm{~S})$, for every memory access. So the timings given need $0.25 \mu \mathrm{~S}$ adding for each memory access, e.g.

Mnemonic	Hex	$\mu \mathrm{S} @$ 4Mhz	μ S on PCW	Notes
INCr	3C	1.00	1.25	
NOP	00	1.00	1.25	
LD r, (HL)	7E	1.75	2.25	
INIR	EDB2	5.25	6.00	B $\neq 0$
INIR	EDB2	4.00	4.75	$\mathrm{~B}=0$
INI	EDA2	4.00	4.75	
INA, (n)	DB n	2.75	3.25	

Note that LD r, (HL) has $0.5 \mu \mathrm{~S}$ added to
the timing, $0.25 \mu \mathrm{~S}$ to fetch the opcode and the other $0.25 \mu \mathrm{~S}$ to fetch the contents of memory location HL.
The fastest way to input a large amount of data into memory is to use a tong list of INI's, this reads a value from the port held in register C , stores the value in memory location HL, and then decrements B and increments HL. The fastest way to read in two channels is to use INI's interleaved with EXX instructions. EXX switches to other register set, this takes $1.25 \mu \mathrm{~S}$. In this way two "arrays" in memory can be filled with data, e.g.

EXX
INI

EXX
INI

This is fast but uses up a large amount of memory. The INIR instruction is useful for sampling one channel (this is used in the 'scope program). This is similar to the LDIR instruction but copies the values from a port (in reg. C) instead of from memory. A maximum of 256 values can be read at once (set $\mathbf{B}=0$). To get more than this NOP's can be inserted between INIR instructions to equalise the timing, e:g.

INTERRUPTS

Note that all of the above timing assume that interrupts have been turned off (using DI). The PCW is interrupted 50 times per second, leaving these switched on will really mess up the timings.

Next month: Linear Power Supply for the 8-Channel ADC.

40410 DATA " OODD4601CDB7E1E1E5FD4B00FD4601CD", 2219
40420 DATA "B7E1E1DDE1C1FD7E00DD7700DD2323FD", 2535
40430 DATA - $2310 \mathrm{D} 706 \mathrm{CFC5DDE5E5DD4E00DD4601CD*}, 2151$
40440 DATA "B7E1E1E5FD4E00FD4601CDB7E1E1DDE1", 2801
40450 DATA "C1FD7R00DD7700DD2323FD2310D7FD7E", 2101 40460 DATA -00DD7700C9530Q4700FA004D01A101F4", 1525 40470 DATA -0147029B02CF023EFF90473EFF91B8D2", 1828 40480 DATA "C5E14F7841903C575DCB3CCB1DCB3CCB", 2031 40490 DATA "1DCB3CCB1D653E07A0CB38CB38CB3868". 1735 40500 DATA "E5CD42E406004F09E5697982DAF8E1B9", 2283 40510 DATA "CAF8E1FE09DA9FE23F07A33C47AF6737", 2237 40520 DATA "1F10FD5F7 AD608855729290115E209E3", 1525 40530 DATA "DDE17BDDE9AE77237BAE77237BAE7723", 2253 40540 DATA "7BAE77237BAE77237BAE77237BAE7723", 1804 40550 DATA "7BAE773E0742A257CB38CB38CB38CA69", 1884 40560 DATA EE2E12CE5CD42E47BAE77237BAE77237B", 2248 40570 DATA -AE77237BAE77237BAR77237BAE77237B', 1804 40580 DATA "AR77237BAB777B10D8E12CCD42E41415", 1908 40590 DATA "C87BAB7715C8237BAB7715C8237BAE77". 1960 40600 DATA "15C8237BAB7715C8237BAB7715C8237B", 1723 40610 DATA "AB7715C8237BAE7715C8237BAB77C93E", 1900 40620 DATA "07A33C47AF67371F10FD5F29092901B8", 1305 40630 DATA "E209E3DDE1C1DDE9AB7715C8237BAE77", 2520 40640 DATA " 15 C 8237 BAE77 15C8237BAE7715C8237B", 1723 40650 DATA "AB7715C8237BAB7715C8237BAB7715C8", 1858 40660 DATA - 237 BAB77C9DDE5FDE5D9E5D5D9C54F21", 2769 40670 DATA "79E37EA9714F06082149E2DD2116E2FD". 1936 40680 DATA *2173E2110400D911060021B9E2D9CB21", 1532 40690 DATA "D22DE33E77AE773E77DDAE00DD77003E", 1934 40700 DATA "77FDAF00FD7700D93E77AE77D919DD19", 2097 40710 DATA "D919FD19D910D7C13EAE0520043EB618", 1706 40720 DATA "050520e23EA606082148E2DD2115E2FD", 1371 40730 DATA - 2172E2110400D911060021B8E2D977DD", 1634 40740 DATA -7700FD7700D97719FD19D919DD1910EE", 1872 40750 DATA *D9D1E1D9FDE1DDE1C9FF3EFF914FE5AF", 3193 40760 DATA EED52E1F287E3EBAFED5223EBE5CB3CCB", 2842 40770 DATA "1DCB3CCB1DCB3CCB1D653B07A1CB39CB", 1813 40780° DATA "39CB3969CD42E406004F09C13E07A1F5", 1683 40790 DATA " 1514 C2BEE383DABEE3FE08DA07E4F1CA", 2576 48800 DATA "DBE3474F3EFFCB3F10FCE6FPAE77EB3E", 2522 40810 DATA "08914FAF47ED42EBOR08094B43CB3ACB", 1653 40820 DATA "18CB3ACB18CB3ACB180504CAF8E31108", 1711 40830 DATA " $003 \mathrm{BFFAE771910F93E07A1C847AF371F",1662}$ 40840 DATA "10FCE6FFAR77C943371F10FCC10504CA", 2072 40850 DATA "16E4CB3F10FCE6FPAB77C932CBE332F2", 2535 40860 DATA "E33203E43217E43EAE0520043EB61865", 1359 40870 DATA "0520023EA632CCE332F3E33204E43218", 1624 40880 DATA "E4C9F5D5E52600291195E4195E2356E1", 2054 40890 DATA "6C260029292919D1F1C9F5C5D5E51100", 1846 40900 DATA "002195E4D5E5CD7AE4E173237223D13E", 2202 40910 DATA "08835F30EFE1D1C1F1C926006B291100", 1793 40920 DATA "B6195E23567BE6076F7B175F7A17577B", 1489 40930 DATA "E6F0B55FC99900000000000000000000", 1100 40940 DATA "00000000000000000000000000000000", 40950 DATA "00000000000000000000000000000000". 0

